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Abstract

New Gaussian-transform formulas can be derived for special derivatives of Dirac wave function. Using the
transform formulas, the title molecular integrals over Dirac wave functions can be derived. All molecular
integral formulas can be derived for the first time. We should add the Dirac wave function to our basis set for
solving the molecular matrix Dirac equation.

Keywords: Molecular Integrals, Molecular Dirac Equation, Relativistic Calculation, Dirac Wave Function,
NMR Spectra.

1. Introduction

Generally speaking, the fundamental equation of the physics must be gauge invariant. The Dirac equation
is the fundamental one of the relativistic quantum mechanics. Recently, Yoshizawa [1] derived the gauge
invariant matrix Dirac equation with using the restricted magnetic balance [RMB] [2], as given by

— —3 — s — |15 1 & — — —
Tm Wpn—Tn cs Cf 0 2mgc? Tm cs Cf 0 e (11)

where €T s the coefficient matrix of the large component spinor for the energy matrix €_, ¢t , is that for
— “7¢, and ¢S are those for the small component spinor, 0 is the zero matrix,
€. (e +

1.2

Viw =< 2ulVIxy, > (-2

(T = 5 < Xul - (B + A)G - (B + A) 1, > (13)

(Wm)w=@ﬂgp|&’-[ﬁ+§)vﬁ-(ﬁ+ﬁ)|xv::= (14)
and

S;.w =< chlalfu > (1.5)

in which m, is tl_lfe electron rest mass, c is the speed of light, & is the Pauli spin matrices, 8 = —ikV is the
momentum, and 4 is the vector potential due to the nuclear spin. The vector potential must be included for the
invariance of the Dirac equation, as shown by Sun et al. [3]. We choose it as the Gauss-type charge density
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distribution [GCDD] model as given by

A= Zfze = F, (m)#m X Ty

Vg

(1.6)

where Z e is the nuclear charge of the M-th nucleus in the case that the Dirac equation is extended to the
molecule,m = (Hagar Bagyr Mgz ) isthenuclearmagneticmoment,ry, = 7 — M = (x,,, ¥, 2y, Jisthecoordinate
of the electron, 1, is the scale parameter for the finite nucleus of GCDD model, and F,,(x) = |, 01 dt t*™exp(—xt?)
is the molecular incomplete gamma function. We use the operator notation for all integrals. Thus jol dt isthe
integral operator, which integrates the integrand followed to it. We use the atomic units throughout the present
article(m, =1,e =1, h =1, 4megy, = 1, ¢ = 137.035999139). However, we describe m, €, and & explicitly,

for the readers convenience when one converts the units to the natural units. Some experiment shows that
the real nucleus is not the point-like one but a finite-sized [4]. However, the charge distribution in the finite
nucleus is not determined. We choose the GCDD model in the present article. In the statistics, the Gauss-type
distribution is called as the normal one. The gauge invariant Dirac equation has no rigorous solution. To solve
it, we use a proper basis set, {y,,}.

Many researchers extend the matrix Dirac equation to the molecule [1,2,5-18]. Especially, many are for
relativistic calculations of NMR spectra [1,2,14-18]. We may call the extended Dirac equation as the molecular
matrix Dirac one. It is natural to add the atomic Dirac wave function to our basis set. However, all researchers
use the Gaussian-type orbitals (GTOs) for their basis set, because there is no molecular integral-formula for the
Dirac wave function. In previous three articles [ 19-21], the author derived the Gaussian-transform formulas for
the Dirac wave function [19] and for its first derivative [20]. Using the transform formulas, the author derived
several molecular integral-formulas over Dirac wave functions as follows: (a) He derived integral-formulas

for the fundamental properties [20], as the overlap integral, S, .., the kinetic energy one, :: Xy Ip*ly, =, the

> = e

nuclear attraction one

of the point-like nucleus, y = — 2 ¢ and of the GCDD model,
M

b _f-”"
1.7)
— _ 2_2 Tig (
V=—Z,e ﬁmFG(%z),

=
the electron-repulsion one, < ¥, X.|VI|x,x1 =, of the usual one, V¥ = £ and of the finite-sized electron,
LT
V _ (TJ-_E) . . . -5 . . .
= Vmre °\72 /) (r, is the classical radius of the electron), where ¥, =1, “exp(—{,41;) is the atomic Dirac
wave function centered at A. Note that the Dirac wave function is singular at the position of the nucleus
located at A. Therefore, the Dirac wave function cannot be written as a linear combination of GTOs.

(b) Next, he did those for relativistic kinetic energy terms given by Eq. (1.3) [21].

(c) He did that for the physical quantity [19], < x,|ig - (p X VA + 4 x Vp)|x, >, of the homogeneous charge
density [HCDD] model,

3Zppe’ 1 ry
_T(l - ET) (0 =71y = 1om)
V - oH Yorr

: (1.8)

ZMe

(rm > Ton)

M

where Tgg is the radius of the finite-sized nucleus in the HCDD model, and of the GCDD model, V is given
by Eq. (1.7). Further, the author showed that the GTO cannot describe this quantity correctly for the case
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of hydrogen atom [22]. In the present article, we derive the Gaussian-transform formula for a special first
derivative and a special second derivative of the Dirac wave function in the next section. Using the transform
formulas, we derive the quantity given by Eq. (1.4), for the GCDD model in the third section.

2. New Gaussian-Transform Formulas

First, we derive a new Gaussian-transform for the special first-derivative of the Dirac wave function. The first-
derivative of the Dirac wave function can be written as

Vr, Aexp(—{ 1) = T, (%Aeﬂ + %) exp(—{aTa)-
et 2.1)

The special first-derivative can be written as

Ta- Vi, “Aexp(—{ana) = —(€aty  + Zaty *)exp(—{ata)- (2.2)
The author derived the Gaussian-transform of the first term in the right-hand side of Eq. (2.2) in a previous
article [19] as given by

J_'|'E_"’_| o

z{‘r(1+ £4) o

(1—r)=A

— . - z _ ; 4 LY E =z 23
—g1ry, fexp(—{ur) = dSs ”‘exp{—S 75) I:i_: .-ru.l dt IPCE R -rul dt (J;!Tr:;] exp [_%] 23
The Gaussian-transform of the second term in the right-hand side of Eq. (2.2) can be derived as follows: We
have

(2.5)

1-

‘ZAA “Aexp(—{,my) = 1+EA EXP( Cala)-

We know the identity described as the formula number 3.471.3 in the Gradshteyn and Ryzhik [23] given by

exp(-f) _ 1 1, (-t _E (2.6)
_r[)f t exp( t)'

lE'I.u" t'IJ'+1

The author derived the Gaussian-transform of the ns-STO in a previous article [24] given by,

HA
rfexp(—{,m) = < Z _u(_ji"" (24— 1]”(;;:)( ) f dS s ratiaT 2 ey p [—(—"‘ - S'J"A]

2ram (2.7)
Using Eq. (2.6) with § = {,ry and v =1 + £, and doing Eq. (2.7) with {, = "7“‘ and n, = 2, we have
3+ oo
B _ i (1-£)%a (1-t)% ¥
{A Al 4 E‘Xp( ‘ZA .ﬂ.:’ mj{; dass 5fzexp(—SrA) [ AI dt t5+‘9 3 I dt t3tey exp [ 45:21 (28)

Substituting Eq. (2.5) and (2.8) into Eq. (2.2), we have the final formula for the special first-derivative given
by

1+EA

U exp(—Cor) = 5 EAJ‘ a-g= f -9
T, Vi, fexp(—{,r) Nl EA]J. dS exp(—517) [ 25(25 dt e 3 i dt 57es
73 1, (1-t)fA 1, (1-t)%a Z
+éa (ﬁjﬂ dt petEs fg dt 12+E4 ) }exp |:_ 45.:3i| (29)

Next, we derive the Gaussian-transform for the special second-derivative of the Dirac wave function given by
(2.10)

Va4 exp(~Gary) = [A5252 + 24D + Bl exp(~Car)
A A
Using a similar derivation to that from Eq. (2.2) to (2.9), we have the final formula for the special second-
derivative given by

3+eEq oo 1 (l—t]f"" 1 (l_r)f,d,
Vir, “exp(—a.ry) = A—J‘ ds §3/%exp(—Sr, [ f dt——j dt———
A P CaTa 2VAr(1 + &) Jo P(=57a) 25 tites 0 eaves
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2.11)

1+¢ t4+Ea t3teg 452

L8 (e, [Pt S 2 e [ a5 e [ ]

Note that, the GTO, exp(—Sr;) , can be converted to the object function by the integral-transform as in Eq.
(2.9) and (2.11).
3. Molecular Integrals

We derive molecular integral-formulas for physical quantities given by Eq. (1.4) as follows: Using the Dirac
identity [25], we have

1
W =525 <26 (B+AWG - (F+ A)|r, >= iz < xl(F+ A)-v(E+4) +16 - [(5+4) x V(5 + 4|, > G
The first physical quantity in the right-hand side of Eq. (3.1) can be written as three terms as given by
E+A)-v(p+A)=p-vp+[p-VA+A-vp|+4d-va (3.2)
The second physical quantity can be written as two terms as given by
id-[(F+A)xV(p+A)]=id-(FxVP)+id-(FxVA+AxVp) (3.3)

The author already derived the molecular integral-formula over Dirac wave functions for the last term in the
right-hand side of Eq. (3.3) [19]. Thus, we derive molecular integral-formulas for remaining four terms for the
finite nucleus of the GCDD model in the next subsections individually.

3.1 The Term p - Vp

We derive molecular integral-formula for the term g - ¥ with the GCDD model of V', which is given by Eq.
(1.7), as follows: We have

< XualP - VPlxvs >= [ dir, “exp(—{ata)p - VP15 ~exp(—{s7s). (3.1.1)
The latter part of the integrand in Eq. (3.1.1) can be written as

2
Tag =
Fy (T_z) Vig Bexp(—zrp)

0

p- VﬁTB_EBer(_fﬁ*TB) = Zye’h?V
VT

o

4 fie 2 T
=Z e:h:[ F, '—‘i)(—:r_']-‘?+—f' (#)V: ]r_iaexp —{a1
M ﬁ‘]"‘ EE 1 ( _ru_ M ﬁ‘]‘"ﬂ o Tu- B ( B B)

4 T 4
=ZM92h2[ r__apl(r—z)(——jrﬂ V——=F (r )MB V4
o o

var VI,

(3.1.2)

]
A 2 —&
Fy (E) v ]T'g Fexp(—{arz)

\,mD

where F, is centered at M = (0,0,0). Substituting Eq. (3.1.2) into (3.1.1) and using the Gaussian-transform
formulas Eq. (2.9) and (2.11) for the resulting integral, we have

ql‘fséql'}sg

I =< X}edlﬁ ) Vﬁ'XvB == Z;He:h:

fm dSljmdSQ(Slsg)_aﬂ folfily + 21 + f313)

4nT(1+4 )T (14 £5) J, (3.1.3)
where
i (1-,)% (1-¢,)" i 1.4
o= [ - e e e
iz (¢ (1—t,)%® (1—1¢t,)°® g (1-t5)" (1-e;) 73
o I Y e R TR
(1-t, (1-t,)%EB B
ff =(EBI dt" ld:-EB +.|r d t, ls:fﬂ )exp [_4§fr§] (3.1.6)
iz (1—ty)%® (' (1-t)% (1-2,)° (1-2,)°B 3
fi= [zsﬂj dt ﬂ—t‘_”fﬂ _Ldt: —t—+fB —“s;( _f dt, K +(2+ E.)_f dt, 2B )] exP[_‘,Sj:] (3.1.7)
I, = [drF e aFl( )exp( Siri — Sa18),
(3.1.8)
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L 4MEBTH
L= [dr— - Fl( )e:-:p( SirZ — S,1d), (3.1.9)
and
Iy = [dr E:;B Fu( )exp( S114 — Sa15). (3.1.10)

We first evaluate 1,. We use the Gaussian product rule given by

exp(—S,rf — S.15) = exp [—%AB: —Slzrpz]
= (3.1.11)
where s, =S, + S, and P = ;—Lﬁ + :—’ B. Next, we use the Sack’s formula given by [26]
exp(—5,,77) = 4mexp(—S,,1& — S;,MP?) z [1(25,,MPry) T4 _ VN (MP) Y™ ()" (.1.12)
1=0 1.

where i;(x) 1s the modified spherical Bessel function of the first kind and ¥, (#MP) is the spherical harmonics.
We know that

P,
i\(x) = y ) (3.1.13)

I=0 i+3y2);

2I+1)“

where (a); = a(a + 1) -+ (a + j — 1) is the Pochhammer symbol. We use the Gaussian product rule again as
given by

exp [_%Ez] exp(—S;2MP?) = exp(—S;MA? — S, MB?).
12

(3.1.14)
Using Eq. (3.1.11), (3.1.12), and (3.1.14) for Eq. (3.1.8), we have
I, = 4mexp(—5,MA* — 5,MB~)1,, (3.1.15)
where
4 (= . . _ i o e (3.1.16)
hig = V"E’fbaju dry FieXP(_S'i:"I'&)Zzzulz(zsizMPm) [ Tag Ze—t Y (MP) Y™ (T3) "
The angular part can be evaluated as in a previous article [24] given by
J 72t Zon=t ¥ (MP) Y™ (73)" = 0. (3.1.17)
Thus, we have
Lig = -—4 2 fum drye Fy exp(—Sy2757) 16(281,MPryy) = I + IT5° (3.1.13)
Vi
where
IR = \,-;?,a f:o dry Fy exp(—S127%) i0(2512MPry) (3.1.19)
and
ot 4 oo . 5 1.
= Var? fRu dryy Fy exp(—S;,15) 1g(25,,MP1y,), (3.1.20)

in which Ry = bry (b = 7) separates the inner and outer part of the finite-sized nucleus of the GCDD model.
We choose p = 7 by the reason described in a previous article [19].

In the inner part, we use the power series of the F,,(x) as given by

Ly (—x)"(m+1/2)n (3.1.21)

2m+1 nl{m+3/2)n

Fn(x) = Sl =il (m+— m-i—— —x) —
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where | F, (a,;c;; —x)is the confluent hypergeometric function (CHF). In the outer part, we use the asymptotic
expansion of the CHF given by

TMim+1/2
Fn(2) = oD (3.1.22)

Using Eq. (3.1.21) for (3.1.19), we have

3/2)n(=1/r2)" s2,7%) (R, ,_ ; . (3.1.23)
2 E?‘t 0 { nrrégfz;{}c') EJ:D% '[D e d?ﬂ.f Tﬁn-‘-zj-'-zexp(—glz?ff).
The integral in Eq. (3.1.23) can be evaluated as given by
N - .n'! om4i ] 1 1 F!+j+? 3 i
_ﬁf dry T\i +2}+29Kp(_512?ﬁ)= i,ﬂf dx x" I+ 2exp (=S 15%) = 5(5 ) 'y(n +ji+ 3 5131-25)
= (3.1.24)

_ 1 2n+2j+30(n+j+3/2) ( c 4 3, S 2)
=5FRo [(n+j+5/2) TR kit ZJn 5 ey 2’ S12Ro

where y(a;x) is the incomplete gamma function of the first kind, which is appeared as the formula number
8.354.1 in the. Gradshteyn and Ryzhik [23] as given by

e (DM T(a) _ . (3.1.25)
y(la,x) =37, e Tt 1Fila; a+1; —x).
Substituting Eq. (3.1.24) into (3.1.23), we have
o 2b° (—=b*)"(3/2), (SLMP?R;)Y [T(n+j+3/2) ,(n+j+5/2) .
Iz = Z . ; —SpRy 755, T O(Ry)
3Vmia,=y nl(5/2), j=o J1(3/2); |T(n+j+5/2) Mn+j+7/2)

 2be (-52)"(3/2)n [T(n+3/2) | (2 o2 w752 _ 5 T(n+5/2)

o 3&2“:“ n!(5/2)n [r(n+5;2) + (EsleP 512) R [(n+7/2) +0(Ro jJ]

_ 2b? [T(3/2) 2 E 55 .5 2.2 752 5 T(5/2) 3.7, 2 4

N [r(s,fzn 2F2 (z 20 2720 D )J“ (Bsump Su) Rore 1f1 (2 2 )] Fot) (3.1.26)

The error term @(Rg) is in the order of R = 0.53179747(—15) for the case of hydrogen, which is very small.

It 1s easy to derive that the generalized hypergeometric function ,F, ( % ;% —bz) can be expressed as
the integral representation given by

3,55, _p2)_ [G/20r6/2) 2 (3.1.27)
2F2 (2 56 foag b) r(z,fzjr(m;f du [ dvvuvexp(—b?uv)

The integral in Eq. (3.1.27) has a constant value, which can be evaluated by the Gauss-Legendre quadrature

(GLQ). The constant value is 0.9961218237(-2), obtained from the 4096-point GLQ. The value of the

F (i LI bz) is also a constant. It can be evaluated by the asymptotic expansion of it from the formula number
’ 2 ’

13.5.1 of the Abramowitz and Stegun [27] as given by

3.7, oy _Tom(, 3 (3.1.28)
1Fy (2’ 2’ b ) b2 (1 zbz)
Thus, we have
n _ f—;fnl du [, dvuv exp(—b%uv) + = (355,MP? - 515) (R — —rﬂ) + O(RY),
(3.1.29)
Next, we evaluate I7:*. Using Eq. (3.1.22), we have

B ! 2 <75 E (SHMP2Y (= i ,
15 = dry —exp(—5,15; ) 19(25,,MPry ) = p dryTy exp(—Spa7y)
Ro T ) ) =0 J1(3/2); Jg,
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S, MP?)! - 1~ 1 1, SLMPA) (=
Z ( =2 __- ) f dxxi™lexp(—S,.x) = —J. dx —exp(—5,,x) + _si"MP_Z (fl'i)f dx x? exp(—5,,x)
2 =0 _j' (3;2)1 R! - 2 Rg X - 3 }"' =0 J ! [:5,1;2:]}, Rg -

it 2y Loz mpey, () (aNH ) (3.1.30)
= =T(0,5,,R}) +SEMP? T g i (sm) (' +1,5,,R3).

where I'(a, x) is the incomplete gamma function of the second kind. We know that
T(0,51,R5) = —E;(—S15R3) = =y — In(S;5R5) — S15R5 + O(Rg) (3.1.31)

where y = 0.57721566449 1s the Euler constant and E;(—x) is the exponential integral, and it is easy to derive

{51230 )j As

I(j'+1,5,R) =T +1)— + 0(R3)

(3.1.32)
Thus, we have
out 1 1 P 1 NP2 . 5. ez lez rp2p2 . L 2 4
il —Ey —Eln(slzRu] +§SHMP F 1,1 ZJEJ SioMP _Eslep R; +5512R0 + O(Rg) G133)
Substituting Eq. (3.1.29) and (3.1.33) into (3.1.18), we have
1 2 1 T D2 q - 5 02 2 4
L = =5 In(S12RE) + Co + 551, MP ZFZ(L 1;2,5; $1MP ) ——SleP §+3 51zro + 0(Rg)
(3.1.34)
where
= 3—2101 du [ dv Vv exp(~b?uv) — 1y = 1.639057508 (3.1.35)
Next, we derive I; and I;. Using a similar derivation from Eq. (3.1.11) to (3.1.34) for I,, we have
and
Ig = 4T[EXP(—SIMZ - Szmz) I3a_ (3.137)
where
Lo = 2B - }P ,F, (: 35 5,,MP?) — S8 MB - MPS,,12 — (3MB%L,, + O(RY) (3.1.38)
and
(3.1.39)

1 {3 3 —
I, = Ei 1F1 (15 > 512MP2) fs?a + U(R4:'

Substituting Eq. (3.1.34) into (3.1.15), doing (3.1.38) into (3.1.36), doing (3.1.39) into (3.1.37), and doing
these resulting equations into (3.1.3), we have

1‘:1+5Al>71+EB

I =Zyeh?

E 32 (¢ WAZ — S.MB?
T(1+e)T(1+£5) ), dsifo dS5(5152) 7/ “exp(—S1MA* — S:MB7) fo

{(,fl - fzgémzjfla + fZIZCL + fafaa} + O(an')
We evaluate the remaining integrals by the numerical integration. To do this, we first change integral variables

(3.1.40)

5
as follows: We set 512 = Z and 5~ = W. The Jacobian is given by

o515 _ (3.1.41)
a(zw)

Then, we have

1+EA 1+EE 1 oo
= 2 A_OB w(1 — w32 -2 exp[-wzMA? — (1 —w)zMB?
I = Zueh r(1+EA)F(1+EB)J;du[w(l w)] Ldzz Pl (1 - w)zMB]f,
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((f, ~ HEMBOL, + filyy + fils} + O(RY) : (3.142)
Further, we separate integral over z as follows: _r:' dz = _[’D“ dz + _[’: dz where a® can be chosen arbitrary. We

choose a* = 4 here. In the first integral in the right-hand side of the above, we change integral variable from

zto u = a*z and do that from z to u = z/a” in the second integral. Then we have

“dz=a® [tdu+a® [Fdu—
ke L foduz (3.1.43)

Thus, all integrals are for the interval [0,1], which can be evaluated numerically by using the GLQ. Using Eq.
(3.1.43), we have the final formula given by

1+e, -1+¢
{a %8

I = Zyeh?
MEMT AT (1 + £,)T(1 + £5)

1 1 — —
f dw [w(1 — w)]~3/2 { f du exp[-wua®MA? — (1 — w)ua*MB?] fn[l)
0

(1),(1) (1,01 4 (1] 1) W 1-w ;
[f1 Lo Ly + 570 ] f du exp [——azMﬂz —azMBZ]fO(Z) [ﬂ{z]ffi)"'fz(z'Jf )+ 1212 }+O(R3)__ (3.1.44)
u u

where
w [ & (1-t, (1-t,)* (3.1.45)
f'&’ - [2u’ua2 -Jrﬂ dty t‘:"';“’l N J. dty Z+J‘-g-"1 ] p 4-wua2t i|
(1 _ {5 {5 J' (1-1t)% J' (1—1t)%E
fi [ 2(1 — w)ua? (2(1—“?)'1!.(1: dt, t3tem o at; t,_E.l'”B
72 1,, (1-t,)°8 (1-t5)" i §:
tep (—2 s Jo 2 — [ ) Jexp[- =] (3.1.46)
n _ (1-t5)%8 (1-t)°B _ B
£ (Eaf dts T +f dt; 27 )8”’ [ 4(1_w}mztg]~ (3.1.47)
£ _ 3 J‘ldr (l—fz)fﬂ_fldt (1—t,)%s
20 —wuaz ), 7 = A {278
1-e (1-t,)E 1 (1-t,)%B 2
- 1+EB( 'r dt, s”:;‘? +(2+25) IU dt, t”zfg )] g [_ 4(1—131;.:%2]‘
2 z (3.1.48)
] 1 Co 1 5 N\ 1 10
Il[a] = —ﬁln(uazﬁ’g) +E+Ea2x° 2Fz (1,1; Z,E; uazxn) —Ea“xgruz + ETUZ-
(3.1.49)
1 {E 5 1 {& 13
1282 (s 35 ) - B2 - e
(3.1.50)
(1) _ 1 ¢3 . 3. 2, YV _ 1 2.2
Iza T 2u?a? 1Fy (1‘ 2’ g lu) 4u? (870 - (3.1.51)
2 Z (1-£,)%4 (1-t,0%4] 7a
Jﬁ:IE )= [21;:2 -[u dt, t? l’-’A f dty £ ;A ]exp [_ 4$ﬂgtf]'
(3.1.52)
@ _ ug; & f (1—t) f (1—t,)%E
A= { 2(1 —w)a? (2(1— wlua® J; dt, t3tem 0 d, tgﬂs
(1 £)°8 (1 t,)B udz 3.1.53
2 _ (1-t)°B (1-t;)°B uig
£ = ( I —f) e [~ ] (3.1.54)

69 Open Access Journal of Chemistry V7. 12. 2025



Three-Center Molecular Integrals

2 1 - £ 1 - £
@ _ uds jdt (1_EZ)B—J‘dt (1—1t;)°8
13 2(1—w)az), t;“ff’ e tzzﬂf’
3.1.55)
i (1—t5)%B 1 (1—t5)%B i uls (
T (EBI dt, T 1 (2 + &5) jﬂ dt, > 2 )} exp [_—4[1_1»;2@]'
1, [a® 1 5 a? 2
I3 = —ZIn (a—Rg) + Co + —a?x, ,F, (1, 1;2,=; a—xg) —atxig + 202,
o 2 u 3u 2 u 2u 4u (3.1.56)
2) _ {B g 5. @ {3 2
‘ré:a) = ?B}JD 1F1 (l; EJ' %lﬂ) ;ﬂ }’n §BMBZIJI.:¢1}'-
(3.1.57)
@ _ulk 1. 3. 2, Y _1,2.2
e =35 1f1 (1' 2’ ’““) 26870 (3.1.58)
Xg = WEMAZ + (1 — w)*MB? + 2w(1 — w)MA4 - MB., (3.1.59)
and
v, = WMA - ME + (1 — w)MB=. (3.1.60)
Using the 128-point GLQ, we have the value of I with 8 significant-figure precision. We obtain
I =0.21580602 eh® for the case of three hydrogen atoms located at M = (0,0,0), A4 = (_:_E,_ g %), and

= 8 g8 2
F= 55D

3.2 The Term A4 - VA

We evaluate the molecular integral-formula over Dirac wave functions for the term 4 - ¥ A with potentials of
the finite nucleus for the GCDD model as follows: The A is given by Eq. (1.6). We have

= > Zhet
< X;:Alﬂ . VA'XvB = —f_..zf,nﬂmf tagley  [E.m €(x, ¥, 2)]

(3.2.1)
where
Iy = =5 7 f dr FnF1F1(5$nTw fM??M)TA_EA?]g_EFE‘-XP(_Q?A — {87s)
(3.2.2)
We first derive
.- = z,fz 7 [ d7 FoFyFy (s — fo)rA_EArg_EBEXP(_‘gATA — {a75)
(3.2.3)
We use the Gaussian-transform for the Dirac wave function centered at A, as given by
girea _312 (3.2.4)

[ ds, s

where f; 1s given by Eq. (3.1.4). We use also that centered at B and have
+E'A‘:l+EB (3.25)

T, A exp(—(,r,) = exp(—$,7%) fo

24mT{1+e4) -0

¢
Izz_4?ff(‘:+f.4]1"(1+£3}f dslf dS; (518,07 % fofos i
where
(1-¢,)"8 f”” 3.2.6
foo = [0, s S ) s e [ 8 529
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and
= m ;,fch FoF Fy(rd — z&)exp(—Sy1i — Sr2) (3.2.7)

We know that T — Zi = 57 — 3520(7r). Then, we have

177 = 177 4 12 (3.2.8)
where
g - m TIdr riFoF Fiexp(—8§,17 — Sord). (3.2.9)
and
5 = o2 [ dF FoFiFiexp(=S.17 — S378)S30(73r). (3.2.10)

Using the Gaussian-product rule, Eq. (3.1.11), the Sack’s formula, Eq. (3.1.12), and the Gaussian-product rule
again, Eq. (3.1.14), we have

177 = 47 exp(—S;MA? — S, MB?)IZ, (3.2.11)
and
I3 = 41 exp(—S;MA* — S;MB*)IZZ, (3.2.12)
where
64 = . R — N 3.2.13
I3 = WJ ATy rﬁpoFlFleXp(_Slzﬁzf}Z 1,(28,MP1y) I?M Z£n=—i W (MP) Y™ (Ty) " ( )
32y ) =0
and
B —64 m 3.2.14
I3z = W} dry TiFoF Fiexp(— Slzr‘-f)z (281, MPry,) [ Taa Dinmt Y™ (MP) Y77 (73)" 20 (T30)- ( )
The angular part can be evaluated by using Eq. (3.1.17) and as in a previous article [24] as given by
sl M TR 1M ey * 2 S20(MF)
7 g B (MP)YY, " (Tag) San(rag) = 155 612 ——
J i Zm=at ¥y ( ) " (7o) "S20(Tar) = 13 Oz MPZ (3.2.15)
Thus, we have
I3 = e a,-'z 7.[ drytaFoF i Fy exp(—8i,757) 1g(28,MP1y).
(3.2.16)
and
—64  Sap(MP) roo . — (3.2.17)
I3 = Y ZL—PZ I, dryragFoFyFy exp(—Si215) i2(2512MPry).
We evaluate IZZ as follows: We have
132 = 52 4 [F2out (3.2.18)
where
R (3.2.19)
152" = gﬁggz srf ° dryTaFoF1Fy eXp(—S127) i0(2512MP1y),
and
64 co ) —
1527 = a7z Jr, ArumiFoF1 Py exp(=S12137) {0(2512MPTag). (3.2.20)

In order to evaluate I35, we use Eq. (3.1.13) and (3.1.21) and have
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jzzin _ 04 S (S5MP?)! (1/m8)™ "2 3 /200, 3/ 2na (1 D 220
Za 27H3f2?b? j=0 j[ (3)’/2)1 mymgna g s [‘?’13![5;"'2};‘11_(5;2}-”2 [3,1"2]-”3 2b (3.221)
where
R}

. 1 J4+myiza
dx xJ+mazat3/2exp(—§,,x) = —(—) y(j + nyza; S12R$)

Rg . 1
: 2(j+n123)+4
5" =f dry {w{“mzah exp(—Si27ir) ) 2\5
5 12

0

L 1 gl ; I'(j+ny33+5/2) : 5 . 7
= E (E) (SlzRg)J+nJ_za+5f2 I-'U ip— 7/{2) 1F1 (J + Ny23 + E,j + Nya3 + E,‘. —512}?3)
1 - T(J+ny23 +5/2) 5 7
= —(RZ)Jtmzat5/2 F ('+n +—;j+ N, +—; =S Rz)
2 F TG+ tagg + 772) © 21U T T2 T3] Tihiza T50 7912 (3.2.22)

where ny,3 =n, +n, + n5. Substituting Eq. (3.2.22) into (3.2.21), we have
rzin — & - (sumP?y 5 (=) (3/2)n, (3/ ) (1/2)g
@ 273/2r5 S0 jia/2); nyngng=0Ty ! Na! 3! (5/2),, (5/2),(3/2)p,

T(j+ny23 +5/2)
T(j+ny,3 +7/2)

: 5 7 5
1Fi (} + y23 +EU + Nya3 +Ei _SIZR{J)

Ty 4 — 2 .3 =5 1
= 72[ Sao + (gsfzmpz —~ 512) R3S + (Esfzm.v‘* —2S5,MP? + 55122) RESaz + O(RS) ] (3.2.23)
0

(=52)"*22(3/2)n, (3/2)m, (1/2)n, Tln123+5/2)
nynang=0 g l(5/2)0, (5/2na(3/2)ng Tiny2a+7/2)

Sa0 = E
(3.2.24)

5y (—b2)"*22(3/2)n, (3/2)n,(1/2)n, T(ny25+7/2)

S5 = =
Al ninang=0 ny g ng {5/ 2)n, (5/20na (3/2)ng Tiniz:+9/2) (3225)

and

(=52) "2 (3/2)n, (3/2)n, (1/2)ns T(ni2a+9/2)
]‘ll!ﬂg!‘nz![5.-{2]1]1(5{2:3“2{3){2]“2 I‘(ﬂ123+11,52) (3.226)
Summations, Eq. (3.2.24), (3.2.25) and (3.2.26), can be calculated in Appendix A.

Substituting Eq. (a.33), (a.35), and (a.41), into (3.2.23), we have

Saz = Enlngﬂq:[]

ZEZIn — 2 1 4 l
L = 317 - 3R} __3117'[; - _HTG: (Caoa = Caos — Caoc + Caoa)

2 ,_, b 8 5 4 o 2 a1,
+(§5I:MP_ _51:) ﬁc.qia _ﬁcﬂlb _ﬂicﬂlc — Caya) +(E512MP —ESlgMP' +ESI2)

(3.2.27)

. (CAZC — Cazq — Caze + CAEf) ] + 0(Ry)

Next, we evaluate rzzeut. For the outer part of the finite nucleus, we use the asymptotic expansion of the
molecular incomplete gamma function given by Eq. (3.1.22). Substituting Eq. (3.1.22) into (3.2.20), we have

- . ' __ 3 (s2,7F2) . (3.2.28)
337" = 5 Jg A1 7z eXP(=S121ip)lo(25:2MP 1) = 0™ 7= 1™
where
EZout — - j-3 I = L j-z
7 = | dryny " exp(=Sp,my) = 5. dx x'"“exp(—51,%}
R Ry

o
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1—5"-'”—5}'1

SO s el “ dx )2
s x -z exp(=S12%) + —= ; x 2 exp(=S12%) +—= fng dx x7%exp(—S12%) (3.2.29)

Substituting Eq. (3.2.26) into (3 2.25), we have
S . 'f ]
2ot = 1"( 1,515R3) + 512MPEF(U 512R Z:H' SlePQZJ '=0 (HAP) (_)} - [+ 1,52R3)
@y /2y sz (3.2.30)
We use the formula number 8.352.8 of Gradshteyn and Ryzhik [23] as given by

|
F(-n+k,x) = [r(a x) — exp(—x) T H(—1)m ]
(3.2.31)
Thus, we have
r(—1,5,,R3) = E.(-S R:)+M— +In(5,,R;) — S,.R; + 1+ s R: + O(R;
s2pfig) = 5; 12845 SR =Y 1289 12 s 12 (Rg) (3.2.32)
Substituting Eq. (3.2.32), (3.1.31), and (3.1.32) into (3.2.30), we have
1 1.2 . 7
SZout — _c2 2 __ -z, - oY 2
2a 382 3(351:MP 51:)[r+1n(5pR@)] + SlqMP 2P (1 1,3,5; 5, MP )
—%( S5HMP* — 253, MP? + 253, ) + 0(RY)
(3.2.33)
Substituting Eq. (3.2.27) and (3.2.33) into (3.2.18), we have
zz=% EE 2 - :_E iﬂ—d} . z 2
i +3(351:MP slg)[cﬂﬂn(sﬂﬂﬁ) S TSNP R, (1,1,3,2, 5,,MP )]
4 c4554 23552, 1
+ (L 58MP* - 253, MP2 + 152, ) r2C,, + O(RE) (3.2.34)
where
2 4 1
CAU = E_;__(CAUG = C‘qnb = CAUC + CAUd) e 0.2222222222 (3 2 35)
2b3 8 15 o
CAl = '}-" — CA].G \.-_?Cﬂlb _;(CAIC == CAld) = _2287894210 (3.236)
and
Caz = =5 — == — = (Caze = Caza — Caze + Cazy) = —0.7360218971 (3.2.37)
Next, we evaluate I3 as follows: We have
fg _ Izzm +Izzaut (3238)
where
—64 S5:0(MP) (R . == 3.2.39
I3 = Py ZL—PZ fn ®dry 1 FoFyFy exp(—S1o1i) i2(251,MP1y), ( )
and
JZEout _ —64 Szn(mj J'm drur*F.F.F, ex I::—S ?.Z)i (25 MPr } (3240)
2a am3/2r]  MPZ IR, M MT0T1M1 p 127ar) L2 12 -

With a similar derivation to that for I3 ””‘ , we have

8b*
zzm — SJ_"S"[:I(_‘)[ _ —

45w,"]"f

dJ.d Vuv J’dJ’dJ'd Vsur
45‘".';; " u(l—l—uv)a 3m g u lJ(ZL—I—S-I—'uu)'”-
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sSuv L p— 4R; 21y 81y
ds | du| d 5 2mpi-s, || -2y 0
SJ uf "Uts+suw)y 2T (?SL-MP 51—)[ 25 15 257
?'TD d J’d Vsu ?T'DJ' d J’d Vsud’
g Yatstwe (1+s5+u)¥? g Yatstwe (l—l—s—l—u)""'-
?'r'[, J J fd g \,-'u fd fd s3yd? } }+Q(R‘1]
) Mt tow 3m ), M T rs s 0 (3.2.41)

All mtegrals in the above Eq. (3.2.41) are constants as given by Eq. (a.36), (a.37), (a.46), (a.47), (a.48), and
(a.49). Substituting these constants into Eq. (3.2.41), we have

—gp? 32 2
;é?:rrz _Slﬂsﬂn[ ){ ﬁcﬂlﬁ +—F 45\.5 Alb + [:CAJ.:: CAld)

2, 4Ry 21y | 8y | 7 s
+(§5I:MP'_51:)[ 450+l—;+é+ﬁm:c_c.4:d_cﬂ:s + Cazy) ] }"’D(Ra] (3.2.42)

For the term I3= ur , with a similar derivation to that for I, Frous , we have

g 9 5
Izzr.:-.ar' SJ."S”D[ )[ }"+1n(5r‘R|}j] lSSJ_qMF' E-(l,j.EZ;EJ 51:MF")

4R}

+ 258 (252 7P — 512) +0(RY) | (3.2.43)
Substituting Eq. (3.2.42) and (3.2.43) into (3.2.38), we have

8 o 9 __
——8,,MP? ,F, (1, 1; 2,5,- slzmpz)

__, 4
152 = SS20(MP) | Sz [In(S12B) + Carl — 3¢

(3.2.44)
y
+(?SE2MP2 _512)7'62[?.43 }+O(R )
where
: |
Cas = — + o=+ o= (Caze — Caza — Caze + Cazs) = 0.1962725059 (3.2.45)

Substituting Eq. (3.2.34) into (3.2.11), doing (3.2.44) into (3.2.12), and doing these resulting equations into
(3.2.8), we have

C 4 2 . 1 .
If= = 4”{ =+ (Esi:S:D[MP) +§5I:MP_ _551:)[111[51:}36) + Cyl

T

51:+453W4F(11375MP:) 3 wB2s,, (MP) L5, (1, 1:2,2; 5,,7P°
3 45 12 2t2 e ’2‘ 12 315 1z "'I}( :] "'( 2 12 )

Y oarme 2 1o o 2c2 2 z 4
+ ESHM’P _gslfM'P +551: TDCA:+(;5£:MP'_512)T[:TCA3 }"’D(RD]

(3.2.46)
Substituting Eq. (3.2.46) into (3.2.5), we have
61+EA 1+=£p
3/2
1’22 F(l + EA:]F(]. + EB:] d’Slj dsﬂ (‘9152) fO.fUH
C 1 -
{ :_D ( 51"5"0[:_‘} t- SJ_"MP 3512)[111(512R[EJ + Cyl
]
—5“+is MP“F(ll-az-s F‘) BSMPS MP F(llzgsmpf)
3 45 1z 2 ] ’24 12 315 1z "D[: :] 2 Lt ’2-' 12
4 _ 2 . 1 - 2 n2 T7D2 2 &
+ (—sfgmp“ —=S5,MP*? +—5I3)T[;CA3 + (—SIZMP - 512) T Caz } + O(Ry)
s 3 2 ? (3.2.47)

We evaluate the remaining integrals by the numerical integration. To do this, we first change integral variables
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as follows: We set 5,, = z and Ss—l = W. The Jacobian is given by Eq. (3.1.41). Further, we separate integral
12

over z as is same as for Eq. (3.1.43). Then, we have the final formula given by

<l+EA<—J.+EB (1) |J_}

1 1
I, = TR TETRYE L dw [w(1— w)] 32 { L du exp[—wua®MA* — (1 — w)ua*MB* ]f

Cap 4 2 a’ -
— + —a4v —a*x, +— | [In(ua®RI) + C,,
| & (45 0 —50°% Eu)[ (ua®RE) + Cay]

8 . (1 1.2 9 , )
—uaxyyy ofH | 1L,1;2,—; uatx
315 or0 a2 2 0

a” + * F, (1 1;3 7 z )
——+—ua®x] ,F|1,1;3,—; ua®x, | —
3u 45 ez 2 0

Y 282 2 & AR 2 28 6 2
+ Eu axﬂ—gua :rD+Ea Ty Cyn + ;ua:ru,yn—ua Yo | 7 Cas

. fld [ w 2 4 1—w qMBﬂ] f,:g;, (2) [ Cap + 4 g% 2a* N a? | al ) s
uexp|——a MA® — a MB~® — ——¥vy———=x;+— ||In| —R&; ;
o P u u o o8 Ty 45u2°% 9427 3u u " At

ag+4f16 F(llE? . ) 8 _a° F(llzg 2 )
- x2 F, 1:3,—; uwa“x —Xa Vo o Fa |1, 1;2,—; ua~x
3u 45u37° 2 0] 31543 0702 2 e
4a® | 2a° la* 2a® a® . s (3.2.48)
+ (Eu_“xé _Eﬁx”‘ + - > )TD Cin +( 7 —5 Xo¥p — = }rﬁ)rg Caz ] }-I-D(Rﬂ,]

where £ is given by Eq. (3.1.45), £, is given by (3.1.52), x, is given by (3.1.59), ¥, is given by (3.1.60),

C,p 1s given by (3.2.35), €4y is given by (3.2.36), Caz is given by (3.2.37), Ca3 is given by (3.2.45), and fc,'i:) and
£ are given by

(1 _ {5 1, (1-t2)°B (1-t3)" } B
0B [2(1—w]uaz fﬂ dt t: B 'Jr dt, g7 E'Xﬂ[ 4(1—wjua3t§:| (3.2.49)
and
(2) (1-t,)°B (1-t,)5B ) ufs
0B = [r vy j dt, .,fes = J" dt, szB exp [—74 (1_W§aztg] (3.2.50)
For I, we have it by replacing y, by — : (vo + V33,) in I__, Eq. (3.2.48), where y,, is given by
Vin = w25, (MA) + (1 — w)?5,,,(MB) + w(1 —w)S,,,(MA4, MB; 1) (32.51)
in which 5, (MA,MB; 1) is the mixed solid harmonics defined in a previous article [28] as given by
S,.(MA,MB;1) = 2MA_MB_ — (MA_MB,+ MA MBE,
2m(MA ) ( yMB,,) (3.2.52)
For I, we have it by replacing ¥, by — [:Vc. —V3y)in I.., Eq.(3.2.48). For L, a similar derivation to that for

I. ., we have the final formula given by
t: 1+s54 <.1+£B 1

T T(1+ )0 (1 +55) ),

dw [w(1 —w)]"3/2a*[wMA, + (1 —w)MB,J[wMA, + (1 - w)MB,]

1
{ J. du exp[—wua®MA® — (1 — w)ua*MB2]f M fo
o

+ 9 2 2, 2\ o
—uax, . F, (1; 1:2;53 uﬂ,‘x,})+ (;u‘ af}xﬂ, —ua‘)rgCAa ]

2 o n 2
[ Eln{tm‘Rﬂ]+ECﬂ—105

! W, - 1—w A A (2) (2
+ | duexp [— —a~-MA- — a'MB'] J N
o u u
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2 a® 2 4 a’ 9 af 2a* 2\ s 3 (3.2.53)
[ e M\ R )T s Ca Tge e (B B2 g % (?u x“_u_*)ru Caz ] }+ 0(Ro)
The I, can be written as replacing [wmA, + (1 — w)mB,] by [wMA, + (1 —w)MB_]in I, Eq. (3.2.53).

The I, can be done as replacing [wMA,, + (1 —w)MB,| by [wMA_+ (1 —w)MB_]in I . Of course, I,z = I,
. The calculation of 2% in Eq. (3.2.48) can be described in Appendix B.Using the 256-point GLQ, we have
the value of I__, I,,,., I, and I, with 7 significant-figure precision and 1., and I,,_ with 5 significant-figure

&
precision. We obtain —=I,, = —0.9808368(—1), —=I

= Ly = —0.9808368(—1),

E‘d'
ct

I.. = —0.9808368(—1), —j’ —0.32330(—12), — = 0.22861(—12),

ey yz

e* . = -
and — I, = —0.1101417(-9) for the case of three hydrogen atoms located at # = (0,0,0), 4 = (_"3_3,_ ?;ﬁ,

and § = (_Z_EJ Jg!g)

Note that each main term of I 1L, and L. is ¢ "0 -""Tu: , which is very large. As the results, each value of I vy and

. 1S the same as that of I__. Also note that each of I

ey Lz and I_, has not that main term. As the results, each

value of I.,., I,

33The Termp-VA+4 Vp

and 1, is very small comparing with that of I__

We evaluate the molecular integral-formula over Dirac wave functions for the term p-vA4 4 A-vp with
potentials of the finite nucleus for the GCDD model as follows: We can easily derive the following relation:

p-VA=4-vp (3.3.1)

Thus, we have

- -+ -+ = -+ B Ifoegﬁ
< XpalP-VA+ AV s >=2 < xua|A-VE|tus >= Zfﬁlmﬂf [¢ € (x.y.2)] (332)
where
HEs deM(BM x rM) F{JFITA_EA( E+EB l+eBJEXP( {aTa — (a75)
(3.3.3)
First, we evaluate I, as given by
I; = %fd?_m’(ﬁ" X ﬁf')anFﬂ;;_EA %"‘ T+z_9)exP( (ata — (B7g)
? (3.34)
We use Eq. (3.2.4) and the relation derived in a previous article [20] given by
. €3+£B‘
(_E‘EE'_B + _E!-va,-) exp(—{z1g) = m] dS,S, g exp(—S,18)f> ( )
3.3.5

where f, is given by (3.1.6). We use the Gaussian product rule, Eq. (3.1.11), the Sack’s formula, Eq. (3.1.12),
and Eq. (3.1.14). Then, we have

(l-h—é 3+sg
— 3/2 2 _ 2 =
1= FAtrET Eajj j ds, (5,5,)"3 %exp[—S,MA* — S,MB*)f, fl?
(3.3.6)
where f; is given by Eq. (3.1.4) and
If = 5 dryy o Fp Frexp[—S,.737] Z (25, MP 1) [ dfg Z= ¥ (M P) Y;”(ﬂ,‘]‘@ X E)z (3.3.7)
o o =0
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The angular part can be evaluated as in a previous article [24] as given by

51 [ﬂxﬁjz

s {BMXMA)

J.drw Z Y’”[:MP)Y’”(T ) (BM x"”w) = ?w5i1 i i"'M‘r"us—m = (3.3.8)
Then we have
16 5. MAXEEE}E - - — :
L= n_rﬁsll:Tf dry 155 FyFyexp[—Sy73 11, (25, MPry ) = 7™ + [7°%¢ (3.3.9)
where
. 16 s I[MAxMB} R
e v sllsz *dryy Ty FoF exp[—Siatu ]H(ESHMPTM) )
(3.3.10
and
ok — 105 —(MAXMB} _Jr A1y Ty FoF18Xp[—515751i1 (281, MPry)
nry Siz (3.3.11)

First, we evaluate I¥*™. We use the power series for the molecular incomplete gamma function, Eq. (3.1.21),
and have

- 16 S, (m’xﬁ)zz (—1/7¢ }nlz(3/2)nl(l/2)n
Ny Mo=0

o
— S _ 21; .
3MrES,,  MP My 0! (5/2) 0, (3/2)n, L drpg 1y 7T exp[—S1214]1y (2512 MPTy)

16 (MAxMB)zzslmz CL/8)"(3/200,(1/ Dy, (5577 i
Ty ng=0 =0

" 3mrd MP 3 11131 (5/2)n, (3/2)1, jis/2); e Ga1)
where we use Eq. (3.1.13) and
_ Ro 1B
= | drgng P exp[-Sy,r2] = 5| dxx/tmzt3/2exp(=S;,x)
0 a
171 jEnys +5/2 3 1+¢1 j¥ny . +5/2 ) I"U_|_ .+ 5}!2)
— : 1l s p2l == §.  RIyitmy +5/2 1z 3.3.13
2(51:) r(}+ﬂl_+2,sl_RD) z(slﬂ) (512R5) TG+ ng, +7/2) ( )

. 5 . 7 {j+n,,+5/2) . 5 . 7
1F1 (} i+ o)+ + o —51233) = _(Rz)“nlﬂwzm 11 (J RECT R Bk T —5125’5)

where we use Eq. (3.1.25). Substituting Eq. (3.3.13) into (3.3.12), we have
lﬁbET‘D — (_b:j”.’: (31{2%:._(1—"{2):1:
5 MAX MB)EZ”,_’;;::& ny!n,! (5,"’2],,,_(31‘(2:];;:
Z (SHMP2RG) T(j + nyp +5/2)
j=o J1(5/2); T({+n,+7/2)

I_z:':lz —

5 7 .
1 (j—I—ﬂ'l: +EJJ"+'”1: +Ei _51:R6)

_ 16b° 2 (3.3.14)
™ L
"5, (MA x MB)_ [ [ [Esfzmpz - 512] R2Sg, + O(RY) }
where
_y (=52)"*2(3/2)n, (1/2)n, T(n12+5/2)
nymny=0 ninal(5/2)n, (3/2)n, T(n12+7/2) (3.3.15)
and
I:_bz}nlg(afz}nlflfz}nz [(r,2+7/2)
SBE = an [y 5] 1] 1 I - B
ny!nal{5/2)n,(3/2)y, T(nz+9/2) (3 ; 16)
Using a similar derivation to that in Appendix A for these summations, we have
S — Im 9Im
BL ™ 4ps  gbs
(3.3.17)

77 Open Access Journal of Chemistry V7. 12. 2025



Three-Center Molecular Integrals

and

L (3.3.18)
Thus, we have
17 = 5,03 x18), {370~ [0+ [E55:P° - 5] (183 - )} + o) G319

Next, we evaluate IF°%*. For the outer part of the finite nucleus, we use the asymptotic expansion, Eq. (3.1.22),
and have

s, (MAxME)_ 1 (MAXMB), 25,0P (53,77
i e 17j dry — s 25,,MPry) = M ity SRR EauE
1 512 P T o exp[—Sy27571i1 (251, MPry) = 2 S : =0 Ji(s72); 1a (3.3.20)
where
= J‘mderzjer(—Slgrﬁ) = lf dx xJ=1/2exp(—5,,X) = ( )Hu' 1"(} . Rf)
a M = i Dys
Ro 2 Jrz Suafio (3.3.21)
It is easy to derive the following relation
. i 9% . . i 3 {slzRng-'Fll;'z (slzﬂgjj"'gfz =
E (} gt SlZR“) =& (} o 2) j+1/2 j+3/2 +O(Ro) (3.3.22)
Substituting Eq. (3.3.22) into (3.3.21) and doing the resulting equation into (3.3.20), we have
zout 2 \m 3, ez _%tp _([2c2 D2 _ 4n3 5
174 = 5,(MA x MB)_ {3 = iF (3: 25 5,,01P?) 2Ry — [ZSLHTP? - 5., QR{,} + 0(R3) .
Substituting Eq. (3.3.19) and (3.3.23) into (3.3.9) and doing the resulting equation into (3.3.5), we have
r:l‘l'EAr:ra‘l'EB oa oo
= . , (5,5, %exp[—5,MA% — S,MB*f,f, 5.(MAxMB
L 1"(1+EA}1“(2+€3]-L dSlJ; 45 (5182 exp =S TA" = S, MBI uf, $1(4 M5,
G A (5 3 aP2) = G- [F520P -] S+ 0R) (329

We evaluate the remaining integrals by the numerical integration. To do this, we first change integral variables
as follows: We set 5,, = zand ;—L = w. The Jacobian is given by Eq. (3.1.41). Further, we separate integral over

z as is same as for Eq. (3.1.43). Then, we have the final formula given by
t’71 +E,4t’73 +ep
A

1
J- dww™2(1 —w)—3/2

I, = (MA x MB
== )21"(1+€A)1“(2+£B) §

1
[ J- du exp[—wua®MA* — (1 —w)ua®MB* ]j':'l:l}'f(l}I
)

2 Jm 15 Va2, 2, 25a%n3 L W —W o 2
|: _Lﬂ F (—; —: ua'xu) ———D—[ uatxgy — ] 2 }+J- du exp[——a~MA~ — a‘MB‘]fDE_}ﬁ(_}
3 qud’? 22 Jru 921 0 u u 2
2 \m 1 3 a® N \-'Eru 2 a® 25a° 'r'o [
R Y e Y b ol e TR | = B R €5
(3.3.25)

where £ is givenby Eq. (3.1.45), £ isgivenby (3.1.47), Xq isgivenby (3.1.59), £ isgivenby (3.1.52),
and £, is given by (3.1.54). Replacing (M4 x ME)_ by (M4 x ﬁ)y in Eq. (3.3.25), we have the final formula of .

L, Doing that by (M4 xME)_ in (3.3.25), we have that of I, . Using the 64-point GLQ, we have the value of

1. = —0.97838414(—5)i,

= —0.69182206(—5)i forthecaseof
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three hydrogen atoms located at 35 _, (0,0,0). 4= (_E _JE 5 nd He= (_E’ £ Note that (a4 x m;’)y —
33

MA_,MB, — MA_MB, = 0.

3.4 The Term ia - (p X Vp)

We evaluate the molecular integral-formula over Dirac wave functions for the term i - (p x Vp) with the
GCDD model of ¥V which is given by Eq. (1.7) as follows: It is easy to derive the following relation:

< XualiG - (P X VD) s >= iZye® W Troz I [E € (x,7,2)] (3.4.1)
where

ff = \‘—:—,gur dﬁi‘”ﬁ_s’*exp(—&m](ﬁ X v)ETB_SBEXP(_%TB] (3.42)

First, we evaluate IZ as given by

17 = == [ dryg Fyry “4exp(—Gum) (g X V)15 Pexp(—{a73)
: (3.4.3)
We use the Gaussian-transforms for the Dirac wave function, Eq. (3.2.4), and for the derivative of it as in a
previous article [20] as given by

e B (3.4.4)

vrg_sa exp(—{zrs) = f as; S zgfz‘?xp( Szrs)fz

24/ JTI"(E +eg) -0

where f; is given by Eq. (3.1.6). Then, we have

‘;, +EA€'3+EB =
z = 4T[r(i+EAJF[2+EB}f dsif ds; (5152)_3’;2f0f2fg1 (3.4.5)
where f; is given by Eq. (3.1.4) and
== N .rdﬁ(""u X 75) Frexp(—S;1f — 5.15)
(3.4.6)
We know that 7,7 x 75’ = 7, x (y; + BM) = 1y x BM = —1,; x MB. Then, we have
15, = = [ dn/ (7 X MB).Frexp(=S1{ — S,13)
e (3.4.7)
Using the Gaussian product rule, Eq. (3.1.11), Sack’s formula, (3.1.12), and (3.1.14), we have
= 4mexp(—S5,MA* — S,MB*)IS, (3.4.8)
where
I 4Jd (7 X MB),F,exp(—S ]z [ (25, MPr,,)
L = T T ex P - T m m *
== s u Ty F1exp(—5a7y 142y M Zm-—zy (MP) ¥,™(737)
-2 der 13F, exp(—S.qr:]z i,(25,,MPry,) [ 2L __ ¥/ (MP) Y, (7)) (7 % MB) 3.4.9
Vg by MMl 12'M o TR M M mm=—1 1 1 Un) Ty = (3.4.9)
The angular part can be evaluated as in a previous article [24] as given by
2 3.4.10
[ it e T (HP) Y7 ()" (g x MB), = 13087, CEBe G410
We know ME x ME = ;_Lﬁ x MEB. Thus, we have
12 = »:ﬂ j’l“’"‘ﬂ;?—t”}ff dry 13F, exp(—5,12)1,(25,MPr,) = I5" + [72% (4.11)
where
; 4 5 (MAxwa'} R
sl N S; zf ® dry rgFy exp(—S1212) 11(2851,MPry) (3.4.12)
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and

4 5 {MAx 'va}z
wr‘rn S12 MFE

1;-r:l'cm't

_[ dTM TPy exp(—Sy573) i1 (28,,MPry,)
(3.4.13)

First, we evaluate I%™. Using the power series of the molecular incomplete gamma function, Eq. (3.1.21), and
doing Eq. (3.1.13), we have

gin _ _4 S (WAXMB]ZZS'J_ZMPE (s2,3p2) Z (-1/r3)"3/2m , oin (3.4.14)
22 W35, MP J=0 jisfz); SM=0 nysfz),  F2e
where

RD RD

sin _ 2j+int+4 2 j+n+3/2

I52 = f dry Ty exp(—Syomy) = 3 dx x exp(—S5;,x)
0

o
1 1 j¥n+5/2 5 .
=_( ) P’(J'+ﬂ+55 slfR[_!l)

245,
= %(S%)Hmm (512R§)"”‘+5“H F (J' L STt —SlzRS) (3.4.15)
Substituting Eq. (3.4.15) into (3.4.14), we have
H F (j +n+ %;j +n+ %; —sﬂng)
SRSy e+ 08
= 4;’::: S, (MA x MB)ZFE;":g \F G Z —b? ) +o(R) =2 — 2 5, (MA x MB), 22 (1- ;) + 0(R9) (3.4.16)

In the above derivation, we use the asymptotic expansion of the CHF given by Eq. (3.1.28). Next, we evaluate
127¥*. Using the asymptotic expansion of F, Eq. (3.1.22), we have

Jopuke o MI drag exp(—S12135) 11 (2851, MPry)

S12 (3.4.17)
Using the power series of i,, Eq. (3.1.13), we have
joout — 1 (ﬁiﬁ}z ZSJ.EWE;_D [F'_fzmz]j cout (3.4.18)
§,4 MP 3 J(5/2); 4.
where
125 = [ g2 ep(-Si) = 7 [ _dvxlesp(-5iz0)
Re a (3.4.19)
-1 i)” I(j+1; Si2RZ) = (:jm [ rG+1- & |+ 0
In the above derivation, we use Eq. (3.1.32). Substltutlng Eq. (3.4.19) into (3.4.18), we have
(3.4.20)

170 = 2 (MAx ﬁ']z[ ;—! WF (12 5,,MP) - 5,R; ] +0(RY)

Substituting Eq. (3.4.16) and (3.4.20) into (3.4.11), doing the resulting equation into (3.4.8), and doing it into
(3.4.5), we have

cl+:.4(3+£3 oo o
I7 = = ds, | ds,(5,5,)7%" —5,MA* — S,MBAf»f>
= r(l‘i’EAJF(Z-I'EBJL lf _( 1 _) exp( 1 2 )fﬂ'f‘.
(E‘I’XM_B.)z[ i_,i_;! 1B (15 ?3 312 P:)_%siro: ]"‘ 0(R;) (3.4.21)
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We evaluate the remaining integrals by the numerical integration. To do this, we first change integral variables

as follows: We set 5;, = z and iy The Jacobian is given by Eq. (3.1.41). Further, we separate integral

SJ.Z

over z as is same as for Eq. (3.1.43). Then, we have the final formula given by

g—,l+£4{3+53 1
Ig = (MA x MB 45 fd ~1/2(1 — w)-3/2
7= T+ eT (2 + 65) Mk 1-w)

(3.4.22)

1
_ __ ] . 1 5 1
[ J. du exp[—wua’MA* — (1 —w)uazMBz]fD(l} ZEl}' [ Rt} (‘J_; E;tmzxu) — 2—7",],2 }
o

1d W o 1=W s 1(2) (2) 1 5 a° 1 2 a
+ i uexp[—;a MA® — " a~MB1f," f; e 1F1(1i 7o %) T + 0(R;)

where £ is given by Eq. (3.1.45), £* is given by (3.1.47), x4 is given by (3.1.59), £% is given by (3.1.52),
and £, is given by (3.1.54). Replacing (4 x ME)_by (MAxMB)_in Eq. (3.4.22), we have the final formula of
I;. Doingthatby (M4 x MB)_ in(3.4.22),wehave IZ.Usingthe512-pointGLQ, we have ie*h’I7 = —0.8745759(—1)i
ie*h%Ig = —0.6184186(—1)i.and I'ezﬁzf;f = o for the case of three hydrogen atoms located at M= (0,0,0)

A=(=8 _ [ andg - (& EE}.Notethat{MAxﬁ) = MA_MB_—MA_MB_=0.
( 3’ a’aj 3 74f3"3 ¥

4. Conclusion

New Gaussian-transform formulas have been derived for special derivatives of the Dirac wave function.
Using these, among all necessary molecular integral-formulas for solving the molecular matrix Dirac equation
(MMDE), most formulas have been derived together with those in previous articles [19-21]. All integral-
formulas have been derived for the first time. We should add the Dirac wave function to our basis set for
solving the MMDE.

Necessary integral-formulas to solve the MMDE are still remaining. Such are those for two-electron operators
as given by

AvXa = (41)

G- (p+A) =5 (5+4)

< X#XK

Such project is in progress.
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Appendix A. Calculation of summations appearing in Eq. (3.2.22)

We calculate summations in Eq. (3.2.22) as follows: We first calculate the summation given by

0=y (=b%)"2 (3/2),1,(3/2)n, (1/2), T(nyzs +5/2)
e ?!-_?!3F13=Dﬂl! ﬂ’f!nﬂ! (5'}’2)?:;(5‘{‘2)::1(3"{2);'15F(ﬂ’iﬂﬂ + 7’,2)
B (-b2)"*%(3/2)n, (3/2)n, T(n12+5/2) 5 1 g 5
= Enmfﬂ !Ny (5/2)n, (5/2)n, T(ny2+7/2) 2F> (?112 - 2rz T2 a 2’2’ b )
(a.1)
where n,, = n; + n,. It is easy to derive the recurrence relation:
L3 a
2F2(@1,02; a1+ Laz +1;%) == 1Fi(0e @+ LX) ——— Fi(ay; ap+1;%) w2)
Using Eq. (a.2), we have
51 73 ., nyz+5/2 (1 3 2) 1/2 ( 5 7 2)
F (g, +2,2iny, +—,—; —b) = = 2 —h2) - 2. =
2 -(ﬂl-+z’z‘nl-+z’z‘ ) nyz+2 kY eHE b nyz+2 1F1 Tz +35 Mz 55 b (@.3)

We know the asymptotic expansion of CHF from the formula number 13.5.1 in the Abramowitz and Stegun
[27] as given by

A (55 -0) =3 (a.4)

We know the integral representation of CHF from the formula number 13.2.1 in the Abramowitz and Stegun
[27] as given by

" dt tn2*?/ 2exp(—b2t) @5)

5 7 T(n,;+7/2)

 T(nyp+5/2)

Substituting Eq. (a.3) and (a.4) into (a.2) and doing the resulting equation into (a.1), we have

5. = £ (_b:)”-'z (31'{2)::;(3";2)?:5 F(nlﬂ + 2)
a0 2b ny My =0 ﬂl!ﬂj ! (5-'"’2)::-_(5’{2):15 1—'[:11-13 + 3)
1 (_b:)n-'l (3"{2)::;(3“{2)::!1—‘(7112 + 2) * n,.+3/2 2
2 1y N, =0 ﬂ'l!ﬂj! (SIZJFI;(SIZJFM F(nlﬂ + 3) o aren exp( ’ tj
\-"'E (_b:)n-_(E_f'ZJ,!__ T(n, + 2)

3 5 1t
=S JFolng +2,—;ny +3,—; _bf)__ 3/2 _p2
2bLay g my1(5/2),, T(ny+3)7%° (”l T25im T3 ZJ; dt t*/“exp(—b°t)

(-b2t)"*(3/2)n, F(n1+2)

ol 5. _p2 )
Ln,=0 n.!(5/2)n, T(ni+3) 2F2 (nl 4 2’2’ st 3’2’ bt (a.6)
Using Eq. (a.2), we have
3 5 i n, +2 (3 5 ) 3/2 R
JF, (n. = n. = b |l=——— R (=i —b} | ————— F(n, +2; n, +3; —b°
_F_(nl+2,2,nl+3,2, b) ﬂl_i_lfrzll 373 nl_l_llel(nl_'_ ny + )
T(n, +1/2)T(ny + 33y 3T(n, +1/2)T(n, +3) [ . .
= —= ds 5™ exp(—b*s) (a.7)
I(n, +3/2)T(n, +2)4b® 2T(n, +3/2)T(n, +2) J, :
and
3 5 . ny +2 (3 5 ,,) 3/2 "
. Z. pt)|=——— |F == —bPt) ———— F(n, +2; n, +3; —b%t
o8 (4 250 m k355 ) m+1/241\27 2 moriz Alm Tz )
(n,+1/2)T(n, +3)T(5/2) [*. — . . -
_T(ny +1/2)T(n, + 3)T(5/2) ds 5 esxp(—b7ts) _Er{ﬂl+1fr2::|r|:nj.+3)J'ldssﬂl'l'lexp(_bzs}
T(n,+3/2)T(n,+ 2)T(3/2) ), 2 [(ny+3/2) [(ny+2) *0 (@8)
a.

Substituting Eq. (a.7) and (a.8) into (a.6), we have
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. 3w (=b*)":(3/2), T(n, +1/2) B 3 (=b*)":(3/2),, T(ny +1/2)
4 @Z,,__zﬁ n,1(5/2),,.T(n, +3/2) ab L, =y m!1(5/2),T(n,+3/2) J,

L Y : (—B20)™(3/2), T(m+1/2) [* _
_EJ; et Pexpb) | Zu;u n,!(5/2),,T(n, +3/2) | s Vs exp(~b7ts)

1
dss™*! exp(—b7s)

3 (=b°6)™ (3/2), T(m +1/2) * . 37 [(1/2) 5

B 2 n, .z 2 e
24un, =0 m!(5/2),T(n, +3/2) I, ds s™:*1 exp(—bs) } TG/ ! l( - )
3nr(1/2)

1d b%s) ,F, (l 2 b? ) 3rd“m b2t
4b T(3/2) ), ssexp(=b7s) 1 Fy 2’ 2’ °) T o exp( )

1 — ,. . T(1/2) 5 . I(1/2) 1 5 3 a.9
[ thsew(_btjr(&mj 1*‘1(2 > bt)_f dss exp(—b S}F(yz:] 1&(;, 7 —b ts) } (a.9)

We use the asymptotic expansion of the CHF from the formula number 13.5.1 in the Abramowitz and Stegun
[27] as given by
1F1 (1; E.‘ —bz) ez (1 __z)
2’ 2 b 2b (a.10)

We use the integral representation of the CHF from the formula number 13.2.1 in the Abramowitz and Stegun
[27] as given by

A (5 5 —02s)

£ )

and

—f duu” Y21 — u)exp(—b’su) (a.11)

—f duu” V2 (1 — u)exp(—btu) (a.12)

B (ﬂ, = —b’ts } = %fol duu™2(1 — w)exp(—b’tsu)

(a.13)
Substituting Eq. (a.10), (a.11). (a.12), and (a.13) into (a.9), we have
9r3/2 1 9w
Sp= s ( _F)_ E:b duu l"r'(l—u,)J- ds s exp[—b%s(1 + u)]
2 B , ,
——f dsvsJ du e “'(l—ujj dt t3exp[—b*t(1 +5 +u)]
8 o o o
+ %fol dss fol duu 2 (1—u) fﬁl dt t3?exp[—bt(1 + 5 + su)] (a.14)
We know the integral representation is nothing but the CHF as given by
1
. r(2) 2)  r(3)
d —b=s(1+ = (253 —b3 1+ =
L e s expl—bs(1+ )] = R (1+u) =12 T (@.15)
! , ., r(5/2) . rs/zy  T(7/2)
32 g [ - 2.0 e —
Ldtt exp[—b t(1+ s+ u)] r(7/2) F (2,2, b (l—l—s—l—u]) T(7/2) b2 (1est ]2 (@.16)
and
L ) . r(s/2) 57 ., r(s/z) r(7/2)
3/2 __J,2 — —i—; = = -
J;dtt exp[-b(1 +s + 5] = o0 B (355 —bP (14 s +su) o e o i)

We use the asymptotic expansion of CHF in Eq. (a.15), (a.16) and (a.17). Substituting Eq. (a.15), (a.16), and
(a.17) into (a.14), we have
4% 16b®  32b7  8bS (1+u)?  8bs (1+u)?
27w Vs ut? 2?\311 NERYET
" 3288 f dsf d“(l Tetw)? 3200 f dSJ- B st )

Z?fHJ dsj e s u~t/? B Z?fHJ dsj gy SV Vu (a.18)

32b° (1 +5+su)52 32b° (1+ 5+ su)s?
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Each value of integrals appearing in Eq. (a.18) is a constant. Each constant value can be evaluated as follows:
We use the formula number 2.213.4 and 2.211 of Gradshteyn and Ryzhik [23] given by

fd;!: 1 o lf ) 1
(a+bx)2yx  ala+bx) 2a (a+bx)x

(a.19)
and
1 x
[dx -t _af? ctgf (ab > 0) (020)
where arctg x = arctangent x. Using Eq. (a.19) and (a.20), we have
1 u~ 2 1w
Jo du ew? 21 s (a.21)
and
1 yl/2 1w
lhtuagrr="32+%% (222)
We use the formula number 2.3.8.1 of the Japanese formula book [29] as given by
J- dx x**(a —x)* " (x + z) Pexp(—px) = B(a,B)z Pa" F 1o (rx,p,rx + 8 —= —p)Re(rx] =0,Re(f) =0,z>=0
(a.23)

Cla)T(E) -

where B(a, ) = TP

is the beta function and @, (a,,a,,¢;; x;,x,) 1s given by

x¥L k2 (@1)ie, 4y (az)
D, (ay, a,, 0y Xy, X0 = L -2 1
(00,00, 605 X0 X2) = 25 (e1)ky+k (a.24)

Taking the limit as p — 0 in Eq. (a.23), we have

. _ag-
J-a-dx @ J-{ﬂ x) 1 _ B(a’dﬁ}z_'paa*-ﬁ_l 2F’1 (FJ o o + ,8‘ —é)

0 (x+z)P

(a.25)
We know the Kummer transformation as given by
Filag, az; eix) = (1 —x)™% 5Fi(ag, 00 — ap; g i)
(a.26)
Applying Eq. (a.26) to (a.25), we have
a x"a-x)Ft _ B(af) qa+B-1 : s
Jo o = o (B0 atpi )
(a.27)
Takinga = 1and z= :—i, we have
Loyl — x)f 1 B(a.B)
dx = 2 F)
L (ax t )7 e+ l(ﬁ pi a+f; + ) [Re(a) = 0,Re(f) = 0,a,a, > 0] (2.28)
Applying Eq. (a.28) witha =1/2, f§ = 1, and p = 5/2 to the integral
1 " u_“"._.. A . .
fu ds fu du T1ss+m)°7 taking @y = 1and a, = 1 + s, and using the Kummer transformation, we have
[rds [lauBr T _pptas—__4iftge_E____ ¢
J (1+s+u}5 2 0 Bz | 3do B zanzaesz  Cava (a.29)

The right-hand side of Eq. (a.29) can be evaluated by the 4096-point GLQ and we have ¢,,, = 0.3132315213
(which is in 10 signiﬁcant-ﬁgure precision). A similar derivation to the above, we have

f ds f du
(a.30)
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The right-hand side of Eq. (a.30) can be evaluated by the 64-point GLQ and we have C,,, = 0.2459321581.
Also, a similar derivation to the above, we have

ful ds L]l duﬁ = _f —_ Caoe (a.31)

(1+s+u)5/2 [2+313f"2[1+s}

Using the 4096-point GLQ, we have C,,. = 0.7166865812(—1). Again, a similar derivation to the above, we
have

Sy _E 1 5 o
fﬂ ds fﬂ L (1+5+5u)5/2 T3 th.i.'l ds (1+25)3/2(1+5) CADd

(a.32)
Using the 64-point GLQ, we have C,,; = 0.6729936319(—1). Thus, we have the final formula given by
or?/2  ox®?  oym 27T
S40 = Tops " 3207 " aps ~ agps Caoa — Caor — Caoc + Caoa) (a33)
Next, we calculate the second summation given by
G — E (_sznlzzlcgfz)nl (3/2)n,(1/2hng Tin,22+7/2)
Al nin2fa=0 iy tng(5/2)n, (5/2na (3/2)ng [lNy22+9/2) (a.34)
With a similar derivation to that for 5,,, we have the final formula given by
9, oy 13547
Sa1 = FLCAIQ - 4%; Alb TQ;:(CAR C.-'-lld:] (a 35)
where
Ciia f duf dv yuvexp(—b*ur) = 0.9961218237(—2)
(a.36)

The term C,,, 1s appearing in Eq. (3.1.26). For the term C,,,,, using 2048-point GLQ, we have

= 0.2079827971
} (a.37)

For the term C,,,., using Eq. (a.28) with &, = u, a, =1+s, a =3/2, § =1, and p =7/2, doing the

Carp = _[ duf dv

Kummer transformation, doing (a.28) again witha, = 1,a, =1+ s, =3/2, =1, and p = 7/2 for the

resulting equation, doing the Kummer transformation again, and doing the 4096-point GLQ for it, we have its
constant value as given by

1 1 1 [suv
Care = [y duf dv [, ds————— = —f {2+S}g 2{1_,_5}2

(1+s+ur)7/2

J. - VE oFi[1.5/2; 7/2; 1/(2+5)]
(2+5)3/2(1+5)7

(a.38)
= 0.3742687401(—1)

For the term C,, 4, using Eq. (a.28) with a; = su, a, =1+5, a =3/2, f =1, and p =7/2, doing the
Kummer transformation, doing (a.28) again witha; = s, a, =1+ s, a =3/2, =1, and p = 7/2 for the

resulting equation, doing the Kummer transformation again, and doing the 64-point GLQ for it, we have its
constant value as given by

(1+s5+s5ur)7/2

i_f-ld s LF[L5/2; 7/2; s/(1+25)]
s (1+25)3/2(1+5)2

(1+2.*:]3J'z[1+s}2

= 0.1586020540(—1) (a.39)

Further, we calculate the third summation given by
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(-b2)"*22(3/2)n, (3/2)ny (1/2)ng T(myza+9/2)
nylnz!ng!(5/2)n, (5/2)ny(3/2)ny T(niza+11/2) (a.40)

Saz = Enlngngzi.']

With a similar derivation to that for 5,,, we have the final formula given by

opdf2  27m?? 27W 945
Saz = 321:? - 5:1,9 - 4;;? (Caza — Cazp) — 129;: (CAZC Caza = Caze t CAzf) (a.4l)
where
! Vi ool X3P (a.42)
Caza = ] du (1+u)* 2J,d (1+x2)*
and
-‘1-
Cazb = f du (1+u = Z-r dx (1+x2)% (a.43)
We take formulas from a Japanese mathematical formula book [30] given by
fdx xr . _*r 4 * b+ e arcan(Z) (€ > 0)
(x* 4+ c)® 6(x*+c)? 24c(x*+c)? 16c*(x*+c) U (a.44)
and
4
J ﬂx _ f:x B ?:x x lh!arctan( j (c > 0) (a.45)
(x24+c)* B(x*+c)* 24(x*+c)? lﬁc(x + c:) s

where arctan(x) = arctangent(x). Using Eq. (a.44) with ¢ = 1 and integrating it for the interval [0, 1], we have
the constant value of C,, . as givenby Caza = i4 + 31 Using Eq. (a.45) with ¢ = 1, we have also the constant value
as given by Cazp = — i‘, + %.Forthetermfﬂgc ,using Eq.(a.28)witha = %,,B =1,p= ;, a, = lLanda, = 1 + s,doing

the Kummer transformation, Eq. (a.26), for the resulting equation, and doing the 4096-point GLQ for it, we
have the constant value as given by

1 1 2l
Cyae =J dsj duLw,,=—J ds :E
(1+s+tr,] 3, (2+97(1+s)

1 r—
Vs
+ | a
15j e 5)7/2(1 +5)2 105[0 S 2+ 9721+ 5)?

= 0.1994662002(—1) (a.46)
For the term C,,,, using Eq. (a.28) withee = 2, g =1, p = ; a, = 1,and a, = 1 + u, doing the Kummer

transformation for the resulting equation, and doing the 128-point GLQ for it, we have the constant value as
given by

. fd J‘d Vsu® jd u?/
N 3 2 . u(1+s+u)9f2_3 o u(2+tz)?f2(1+u)

8 1 W5 16 1 "_.5'
— — = 0.8519836140(-2 a47
+15-LdS'(z_I_s]?,f‘:(l_'_S):+105-Ld5‘(2+5,)7,’:(l+5.)3 ( ) ( )

For the term €., similarly to C,,, and using the 64-point GLQ, we have its constant value as given by

c B fld Jld sﬂﬁ B zfld 5,3
ae = | S M s s 3), C 29721+ 9)

. a fld s N 16 fld s*® = 0.5697996217(—2) (2.48)
15), T @297+ T 105), T2 (Ar s |
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For the term C,,, similarly to €45, and using the 64-point GLQ, we have its constant value as given by

s3ud/2 2t 52 4 1 st
Cn d d -1 d ~ +—j d — -=0.2821839924(—2
A j SJ “A+s+s0)? 5L A+ 29)72(1+s)  35), T(1+25)72(1+5)° ((,(1)'49)

Appendix B. Calculation of ,F, Functions

9 7
We calculate 2F2 (1» L2 —x ) and 2F2 (L L3 oix ) here.Barnes[31]showed the asymptotic expansion formula

for the function pfp (@1, -+, Ap; P1, -+, Pp; X) as given by

HE:1 {%} {x} = EXP(J)IEG Lp {1 + E'r' 1,7 ii} b.1)

where the J5 /x® is the error term. However, he did not show the explicit formula for M,, then, after a numerical

experiment, we have the asymptotic expansion of the »F (1, 1;2 ;;XJ as given by

1.9 2. T{2)r(s/2) x—9/2 40 (1)n(7/2)n .
i (1, L2 - x) T exp(x) X2 e (for x = 37) (b.2)
For x < 37, we calculate it by the power series given by

1. 9, Yoo (L 1g
P2 (112 Six) = m=0 i 2)n(9/2)0 (b.3)

7
After a numerical experiment, we have the asymptotic expansion of the 2f2 (1» L3 25x ) as given by

1:3 1.x) = [GNG/2) , —or2 40 (@n(5/2)n i
2F; (l, 1;3 z,x) =~ i exp(x) Xas 0 am (for x = 38) (b.4)

For x < 38, we calculate it by the power series given by

a e _ v AM(Ln(l)n
P2 (113 Jix) = =0 1@)n(7/2)m (b.5)
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